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A Comparison of Multiprocessor Scheduling Methods
for Iterative Data Flow Architectures

I. Introduction

1.1. Purpose

This paper provides a qualitative comparison between the Algorithm To
Architecture Mapping Model (ATAMM) [1] and three related works [2, 5, 7], with the
primary focus on [2]. The problem domain is non-preemptive scheduling of iterative,
large-grain data flow graphs as may typically be found in signal processing applications.
The purpose of this paper is fourfold: to resolve differences in terminology used by the
various authors, to highlight the similarities and differences betwzen ATAMM and the
other models, to point out the relative features and limitations of the various approaches,
and to suggest possible dircctions for future ATAMM rescarch.

1.2. Assumptions

e All schedules in this paper are assumed to be multiprocessor schedules, so schedule
will be used as shorthand for mudtiprocessor schedule.

» Unless otherwise stated all observations regarding ATAMM behavior are for a graph
running in steady-state.

2. Terminology

2.1, ATAMM Terminology

In order to facilitate a comparative discussion of the ATAMM and Optimum
Unfolding scheduling strategics, the terminology used in the two strategies will be
introduced and contrasted in this section. Some familiarity with both ATAMM and [2] is
assumed; the terms used in both works are introduced not to give precise definitions but
rather to provide a mapping between the two models. The terminology used by ATAMM
will be covered first, and then it will be shown how the definitions used in [2] relate.



A data tlow graph in ATAMM is called an algorithm marked graph (AMG). Two
other graph types are used in the ATAMM design system, namely the node marked graph
(NMG) and the computational marked graph (CMG). While these graphs are
fundamental to the ATAMM model and ATAMM design procedure, they are primarily a
means by which data packet injection interval and node firings are controlled. The effects
of the NMG and CMG, such as controlling TBO, ensuring that buffers are not
overwritten, and ensuring steady-state operation, are important but the exact manner in
which the NMG and CMG are uscd to achieve those effects need not be reviewed to
compare ATAMM schedules with [2], [5], and [7].

An AMG consists of nodes representing large-grain computations and directed
edges from one node to another (not necessarily distinct) node, which represent the flow
of data and thus indicate temporal precedence constraints. A source is a special type of
node that has no incoming edges but nonetheless produces tokens at a fixed rate. A sink
is also a special type of node that has no outgoing edges, and which therefore produces no
token when it fires. One or more initial tokens indicating the presence of initial data may
be placed on any edge before the graph begins execution. The successor node of an edge
will use the nth token from the predecessor to produce the (n+d)th token of the successor,
where d is the number of initial tokens. The nth packet of data consists of the nth token
produced by each node excluding the sinks, which never produce any tokens.

The time between the completion of two consecutive packets is called 780 (time
between outputs). Part of a design procedure may be to achieve a certain desired or
target TB(O). When a graph is either simulated or run on actual hardware, the actual TBO
may slightly vary or even oscillate if injection is not controlled properly. Since this paper
is primarily concerned with operation at a theoretically perfect steady-state, from here on
TBO should be read as target TBO unless otherwise stated. In an injection-controlled
environment such as ATAMM, TBO is necessarily equal to the injection interval for the
graph to run in steady-state. The smallest achievable TBO for any number of processors
is called TBO,,,, where the subscript indicates absolute lower bound. In [1], TBO, ; is
shown to be the maximum time per token of any directed circuit in the AMG. Let C, be
the ith directed circuit (numbered arbitrarily), T(C) be the sum of execution times of the
nodes in C, and M(C)) be the number of'initial tokens in C,, then

T(C
T™O,,, = M:lx{~¥l} . @)
M(C))
The smallest achievable TBO for a given number of processors is TBO, ,,. Let
TCE be the sum of all node execution times and R be the number of processors; then
TBO,, = Max { TBO, —TS} . )

[3°]



If there is no directed circuit (recurrent loop) in the AMG, then T(C) = 0 and
TBO,,,, = 0. There is another tactor which may limit TBO,, ;. Ifit is assumed that nodes
cannot be multiply instantiated!, then TBO,,,, will be either the result of Equation 1 or the
largest node execution time, whichever is larger. Such an assumption is made in [5].
However, ATAMM [3] directly allows for multiple instantiations, and a similar effect is
achieved in [2] by unfolding the DFG. Unfolding is a transform that takes a data flow
graph G and an unfolding factor J as input and constructs a new graph which contains J
copies of each node of GG. The J copies of a node A of G correspond to J consecutive
instantiations of A, and edges arc added to the unfolded graph so as to enforce all of the
intra-packet and inter-packet data dependencies. See [2] for the unfolding algorithm and
additional discussion.

The execution of a node on some data packet is referred to as an instantiation of
that node. A node is said to be multiply instantiated if there exists an instant of time in
which the node code is operating on two distinct data packets simultaneously. Although
instantiation 1s primarily a soflware term, it can apply to hardware as well. Note that for
our purposes a pipelined hardware multiplier which is in the process of computing several
results in its different pipeline stages is in essence multiply instantiated. Two even more
closely related hardware examples are a multiple-issue CPU with multiple identical
functional units, and a supercomputer with multiple vector units on each CPU.

A schedule is periodic with period TBO if and only if the following property is
met. If a node fires at time t, then the next time that the node will fire is exactly t+TBO.
Both ATAMM and [2] are concerned only with graphs which operate in a periodic
fashion. If a graph executes in a periodic fashion it is said to have reached sready-state.
There may be a length of time when a graph first begins executing that it is not in steady-
state, in which case a fransient condition exists,

A total graph play diagram, or TGP, is a graphical snapshot showing the node
activity at steady-state for exactly one TBO interval of time?. The earliest-created packet
is usually numbered 1, the next earliest is numbered 2, and so forth. An example AMG is
shown in Figure 1(a), a feasible schedule is given as Figure 1(b), and the resulting TGP is
shown in Figure 1(c). ' 7

For a complete introduction to ATAMM and a preliminary system implementation
see [3)

!See next paragraph for a definition of multiply instantiated.

2Sce |1] or |3] for an alternate but equivalent definition.
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Figure 1. (a) An AMG. (b) Execution of the AMG. (¢) TGP diagram. Data packet
numbers are shown in parenthesis.



2.2. Parhi and Messerschmitt

The terminology used in [2] corresponds quite closely to that of ATAMM. The
counterpart to the ATAMM AMG is referred to simply as a data flow graph, or DFG.
Like an AMG, a DFG consists of nodes and edges. However, there are no sources or
sinks; every node is part of at least one directed cycle, which is defined in the usual graph-
theoretical sense. A register is analogous to an initial token and specifies both initial data
and delay. The "initial data" property is not explicitly stated in [2], but is implicit because
a DFG must have at least one token in every loop to start up and reach steady-state. As
[2] provides no notation for specifying "full" versus "empty" registers, it must be assumed
that all registers are initially full.

One ATAMM data packet corresponds to one iteration of a DFG. TBO, ,, is
referred to in [2] as the iteration bound, or Ty, but the more general TBO, , has no analog
since [2] is not concerned with running with fewer processors than is required to achieve
the iteration bound. A processor schedule in which the actual iteration period is equal to
the iteration bound is said to be a rate-optimal schedule. Iteration number is equivalent to
packet number.

Throughout the remainder of this paper terms from both ATAMM and [2] will be
used as is appropriate.

3. Comparison of ATAMM Scheduling to Parhi and Messerschmitt
Scheduling

3.1 Lully Static Scheduling

3.1.1. Classes of Schedules

Three terms which are used in [2] but not in the referenced ATAMM literature are
overlapped schedule, fully-static schedule, and cyclo-static schedule. The following
definitions are consistent with those presented in [2]. A schedule is overlapped if any
node of packet? N+1 fires before all nodes of packet N have completed. The strategies
used in ATAMM, [2], and [5] may create overlapped schedules. A periodic schedule is
fully-static if all instantiations of any given node are scheduled on the same processor. A

¥The phrase "node of packet N* is not strictly consistent with the definitions of node and packet;
technically the phrase should be "node instantiation that produces a token of packet N* However, the
former phrasc will be used for brevity when the meaning is unambiguous.



periodic schedule is cyclo-static if the following condition is met. If any given node is
instantiated on processor P, fqr packet p then it is ins.tanliated on processor P, .\ for
packet pt 1, where K is some integer constant and N is the number of processors. A
schedule must be periodic if it is to be either fully- or cyclo-static. These terms are more
rigorously defined in [2].

There exist classes of scheduling which impose constraints weaker than cyclo-static.
General periodic schedules may or may not be cyclo-static. That is, the function which
maps node iterations to processors may not be lincar modulo the number of processors, as
is necessary for a cyclo-static schedule. [2] and [S] are concerned only with compile-time
schedules, whereas ATAMM scheduling is done at run-time, although scheduling
performance is predicted at design time. With regard to the question of which processor
executes which node iteration, run-time assignment of nodes to processors can be
unpredictable*. For example, consider Figure 1(c). In the current ATAMM
implementations, at the time instant t when both A® and B™ complete, the two processors
enter a race condition, the winner of which will run whichever of B® or C has higher
priority. The node priority is only used in node to processor assignment but all nodes are
exccuted as soon as they are enabled. Thus a general periodic schedule will result and
time performance and periodicity are not adversely aftected.

3.1.2. Fully-Static Schedules

In [2], it is shown that for any DFG there exists a fully-static rate-optimal
schedule, given adequate resources. However, it is crucial to note that Parhi and
Messerschmitt achieve a schedule which is fully-static with respect to the unrolled DFG,
not the original DFG, although curiously this fact is not directly stated in [2]. As far as
the original DFG is concerned, the schedule that their unfolding-based algorithm creates is
actually cyclo-static. For example, consider Figures 2 and 3(a), both taken from [2],
which show a DIFG and the resulting rate-optimal schedule. To see why Parhi and
Messerschmitt did not specifically address this issue, note that under the assumption that
nodes may be multiply instantiated (or equivalently for purposes of this argument, that the
graph may be unfolded), it will nor be possible to create a fully-static schedule if the time
of the largest node is greater than TBO,, ,. Clearly any two or more distinct instantiations
of the same node which are running at the same time instant must be on two distinct
processors. In this paper, schedules that are fully-static except for violations caused by
node exccution times that are greater than TBO,, ,, will be referred to as optimally-static.
An oplimally-static schedule is technically cyclo-static, but it is also as fully-static as it can
be; hence the use of a new term.  Also note that even if no node has execution time greater
than TBO,,,, , to achieve a fully-static ratc-optimal schedule may require more processors

4Historically, no cffort was made to show that ATAMM architectures exhibited fully-static or cyclo-static
behavior (although they are periodic), so ATAMM schedules might be placed in this catcgory. However,
in the future it is planncd that ATAMM schedules may be made fully-static through the addition of
processor/node constraints.




than tor a cyclo-static rate-optimal schedule®. Again consider the example shown in
Figures 2 and 3(a), which were taken from Figure 7 of [2]. The DFG is shown in Figure
2. Figure 3(a) repeats the schedule shown in [2]; this schedule is the minimal-processor
rate-optimal schedule and is cyclo-static with respect to the graph of Figure 2. Note that
this schedule is as static as it can be, given the 3 processor limitation. Figure 3(b) shows
that in this case the addition of | extra processor allows for an optimally-static schedule.

Not only is the schedule in Figure 3(a) not fully-static with respect to the graph of
Figure 2, it is not even periodic with respect to a period of length TBO,, ; its actual
period is three times longer than TBO,, .. A modified version of the schedule that is
periodic with period TBO,, , is shown in Figure 3(c).

(A) e e xBf *

Figure 2. An AMG with initial tokens.

¥This follows casily from the sccond point. column 2, p. 355, of [5]
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static schedule with period equal to TBO,,



The primary achievement of [2] is to show that any DFG can be scheduled rate-
optimally in a fully-static manner with respect to the unfolded version of the DFG. Before
effort is made to show that ATAMM schedules can be made to be optimally-static with
respect to the original graph, it seems wise to consider the importance of optimally-static
scheduling from an engineering point of view. Such an engineering viewpoint was not
adopted in [2] due to the fact that determining a fully-static (or optimally-static) rate-
optimal schedule is an NP-complete problem [6], as pointed out in [2).

Nonetheless, the optimally-static property is of practical as well as theoretical
interest. If a node can be executed on any processor, as is the case in current ATAMM-
based architectures, then every processor requires a copy of the code for that node. Such
replication is a strength if a high degree of fault-tolerance is desired [3], but is wasteful if
memory conservation is a major concern.

Both optimally-static and cyclo-static scheduling have a communication delay and
bandwidth usage advantage over dynamic scheduling if the processors are connected via a
non-bus (i.e. point-to-point) network. For a dynamic schedule, it can easily be the case
that any node will run on many different processors, and potentially on all processors at
different points in time. Thus, depending on the implementation of course, if a copy of
each node is kept on every processor on which it may run (which in general may be all
processors), then graph updates such as making a token available on an incoming edge
must be broadcast to all processors. This is not a problem for current ATAMM
implementations because the communication network is always a bus.

If an optimally-static schedule is known, then of course the processor” on which
each node will run is a known constant, in which case the potentially high overhead of
broadcasting on a non-bus network is climinated. In the case of a cyclo-static schedule,
the processor for each node is by definition not necessarily a constant, but nonetheless the
processor which will run the next instantiation of a node is known (if the schedule is
determined before run-time) or can be computed on the fly (if dynamic scheduling is
used). The destination processor for graph maintenance messages is known and
broadcasting is not necessary.

3.2, Comparison of memory requirementy

To achieve rate-optimal operation, there must be a mechanism for exploiting
suflicient pipeline concurrency. In [2] this is achieved through overlapped schedules and

A copy of a node might typically include the code for the nodc plus graph information such as lists of
incoming and outgoing arcs, and buffer space for incoming tokens waiting to be used.

70f course, if the computation time of a nodc is greater than TBO, then il is actually the set of processors
on which the node will run that is known.



optimum unfolding. In ATAMM the mechanisms are overlapped schedules and multiple
node instantiations.

Although memory requirements were not of concern in [2] due to its theoretical
point of view, it is nonetheless interesting to compare the memory requirements of
optimum unfolding to a dynamic scheduling system typified by ATAMM. One measure
for this comparison is the peak amount of memory required for node instantiations; unit
memory requirements for each node will be assumed. Another measure is the required
number of buffers on the edges of a data flow graph.

In [2], nodes are not multiply instantiated so the node measure is easy to compute;
it is simply JN, where J is the unfolding factor and N is the number of nodes in the DFG.
From the unfolding algorithm it can also be seen that the number of edges and hence
minimal number of buffers® is also JN. Thus from the memory point of view every node is
multiply instantiated J times whether it "needs" to be or not, and every edge is buffered J
times whether it "needs" to be or not. Whether or not a node needs to be multiply
instantiated or multiply buffered is a function of its computation time and TBO.

Due to its use of injection control ATAMM will require no more than the
minimum number of instantiations for each node, and relatively few buffers. First consider
multiple node instantiations. Let A be a node and T(A) be the execution time of the node,
then from [3]

{number of instantiations} (A) IVTBO] 3)

It is easy to see that [T(A%BOW is a lower bound on the number of instantiations.
In steady-state exactly one instance of A must complete every TBO interval. Each

instance of A takes T(A) units of computing time to complete execution. Hence,
{number of instantiations }(A) > T(A)/TBO, and the lower bound follows immediately.

The fact that [ T(A%BO] is also an upper bound is less obvious, but assuming that the

graph is periodic in TBO?, this bound follows from the fact that each instantiation of a
node begins at the same time offset from the beginning of a TBO interval.

RLiach edge requires at Icast one buffer to hold a token from the time it is generated by the predecessor
node until the time when it is used by the successor node. It is possible to assume that the successor node
maintains this buffer rather than the edge, but the buffer must exist somewhere.

A proof that the ATAMM strategy leads to periodic exccution is given in [1] for graphs which contain at
most onc token per edge and which are run without multiple node instantiations. The proof is presently
being extended to show that graph plays remain periodic cven when the above restrictions are lifted.



Turning to the number of buffers required for a single edge, the upper bound is
given by

T

number of buffers < BN 4)
TBO

where TT is the total packet computation time as defined in [1]. TT represents the

maximum length of time the graph may take to fully process a packet. Thus just before a

packet completes, [T%BO ] new packets may have started, and by research now in

progress'’, Equation 4 is a valid upper bound.

Optimum unfolding will need to unfold the graph ar least

Max T(A))
J = {ull nodes A in DIFGY ,_I,BO (5)

times, and most probably many more times than that. In the worst case the unfolding
factor may be exponential in the number of arcs with registers!!. Therefore J copies of
each node will be made. J copies of each edge will also be made, and so J buffers will be
required. Under ordinary circumstances we could expect the number of instantiations
required by (3) and the number of buffers required by (4) to be considerably less than the
number required by quantity (5), at least for most nodes/edges.

The DFG of Figure 2 provides an illustrative example of when optimum unfolding
does and does not cause extra nodes and edges to be instantiated. From the schedule of
Figure 3(a), node A must be instantiated 3 times concurrently, but B only needs to be
singly instantiated. The optimally unfolded version of Figure 2 is given in Figure 4. This
graph contains 3 instances of node A, 3 instances of node B, and three copies of each
edge. All 3 instances of A are required, but only 1 instance at a time of B is needed.

Although this example is relatively kind to optimum unfolding in that an
exponential unfolding factor is not required, it is still seen that optimum unfolding requires
considerably more than the minimum amount of memory in terms of node instantiations
and edge buffers.

19Private Communication with Robert L.. Jones, NASA Langley Rescarch Center, Hampton, VA, Summer
1992,

MRemark 7.2 of {2] implics this fact. Clearly, ordering the loops in an optimally unfolded DFG is not
cxponential in anything, unless the number of loops or the number of nodes in some loop is exponential
with respect to some quantity. The latter possibility is the case. The worst-case number of nodes in a loop
of the unfolded graph is lincarly proportional to the unfolding factor J, which is cqual to the least common
multiple of the number of registers in all loops, a quantity which can be exponential in the number of
loops (and thus edges) of the original graph.

11
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4. Other Related Work

4.4. Range Chart Scheduling

An alternative method of scheduling DFGs is given in [S]. The primary tool used
to determine a schedule in [S] is the range chart. A range chart is equivalent to a TGP
diagram with the execution time of each node cxtended by the float time of that node. As
a result, the point of view taken in [S] is very similar to that of ATAMM, which is based
on the concept of TGP. Like ATAMM but unlike optimum unfolding as presented in [2],
the range chart technique is applicable to data flow graphs which may or may not contain
loops; there is no requirement that every node be in some loop. One difference between
[5] and recent ATAMM work is that [5] assumes the longest node execution time to be an
additional lower bound on TBO,, ..

Two specific problems are tackled in [S], and both are solved with essentially the
same heuristic. The first problem is to minimize the number of processors required to
schedule a data flow graph, given a fixed TBO value greater than or equal to TBO,,/,
where the prime indicates the additional constraint of longest node execution time on
TBO,,,. The second problem is to find a fully-static schedule that minimizes TBO for P
processors, where P is greater than or equal to the number required for a fully-static

schedule at TBO,, .

The heuristic for the processor minimization problem is presented first, and
operates as follows. The range chart is computed and a node is chosen as the reference

12
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node. The choice of reference node is a weak spot in the algorithm, as the performance of
the heuristic is dependent on the choice of reference node, and the only recommendation
that the authors make is that the reference node be “carcfully chosen" [S]. The algorithm
enters phase 1 and for each node does the following;

I A pointer to the current level is maintained for each time unit in the TGP Initially this
pointer is set to | for all time units.

2. The node with least scheduling range is chosen for processing.

3. The start time of the node within the TGP is chosen so that the node runs within its
scheduling range and occupies the lowest possible level at each time unit. Note that
since levels do not necessarily correspond to processors in this step, a single node may
occupy more than one level. The pointers are updated to reflect the new first available
level of each time unit,

After phase 1 the algorithm sorts the nodes in decreasing order of execution time,
and then enters phase 2, executing the following steps for each node:

4. A pointer to the current level is maintained for cach time unit in the TGP. Initially
this pointer is set to 1 for all time units. In this phase a level will correspond to a
processor.

5. The first node from the sorted list is removed and assigned to the first level that has
available all the time slots that the node requires. The pointers are updated for the
time units now occupied by the node.

The algorithm for the TBO-minimization problem uses the above algorithm as a
subroutine. The TBO-minimization algorithm operates as follows. The number of
available processors P is given, and TBO is initially guessed to be TBO,,,,. The
processor-minimization algorithm is run, and if'in cither phase the algorithm needs more
than P levels, it is aborted and restarted with a new TBO guess one time unit longer than
the previous guess. It is not explicitly mentioned in [S], but this linear search for the
minimum feasible TBO could be changed 1o a binary search by making use of the
knowledge that the number of nodes is an upper bound on the number of processors
required (recall that multiple instantiation is not allowed in [5]). In this way the running
time would be increased logarithmically rather than linearly from the time of the
processor-minimization algorithm.

Given the beneficial properties of fully-static scheduling as discussed in Section
3.1.2, it may be desired to develop an optional additional node-binding step in the
ATAMM design procedure for achieving fully-static (or cyclo-static if that is all that is



desired) operation. The node-binding step assumes a TGP with float times has been
constructed'2. Nodes can then be assigned to processors in one of three ways.

1. For sufficiently small graphs, an exhaustive scarch using branch-and-bound or other
speedup technique(s) could be used.

2. A heuristic algorithm, such as the one presented in [S] could be used; this is perhaps
the best alternative for large graphs. As pointed out in [5], two interdependent
decisions need to be made in order to assign nodes to processors: the nodes need to
be fixed in time, and bin-packed onto processors. The heuristic in [5] first makes the
time decision for all nodes, then makes the processor decision for all nodes. While this
scems to be a reasonably intuitive approach, there is no obvious reason why a different
approach cannot be tricd, such as fixing a node in time, assigning it to a processor, and
repeating the procedure for each node. This "one node at a time" approach is likely to
be the one a human would use if attempting to create the schedule by inspection, as in
alternative 3 below.

A heuristic algorithm will require the construction and maintenance of a range chart,
which can be done cither with existing ATAMM code that computes a TGP with node
floats, or with the range chart construction algorithm provided in [S]. A comparison
of the running time of these two methods would be interesting but is beyond the scope
of this paper.

3. The user can be relied upon to assign nodes to processors by inspection. This
procedure could be supported in the ATAMM Design Tool!* through the addition of a
resource display that allows nodes to be placed on processors one at a time in
sequence. Alternatively, the user could be shown an initial display, such as one node
per processor, and then be allowed to change the processor on which a node is
running, as long as the resulting schedule is feasible. Node assignment should be an
casy task as the float available to a node is dynamically updated in the Design Tool.

As nodes are moved around, and if desired by the user, a node could be fixed in time
thus eliminating its float. Currently, the ATAMM design procedure uses control edges
as a mechanism for controlling placement of a node within its float. Control edges do
not allow arbitrary placement of a node within its float time, but nonetheless in a bin
packing situation the only meaningful times to start a node are upon completion of
another node (also, in a data flow architecture the only event which can start a non-
source node is the finish of some other node).

IZRecall that such a TGP is cquivalent to the scheduling-range chart of | 5], so if the performance of the
currently-used ATAMM algorithm for finding the TGP and floats cver proves unsatisfactory, a rough time
complexity comparison could be made between it and the algorithin used to compute range charts in [5].
The range-chart algorithin would then offer an alternative if its performance was shown to be better.
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4.2, Optimal Processor Assignment for Pipeline Computations

Another paper that address the scheduling of iterative data flow graphs is [7], but
in this work a different point of view is taken. In ATAMM, [2], and [5], it was assumed
that nodes may be neither split nor joined -- that the data flow graph expresses whatever
concurrency is and is not available in the problem. In [7], a fundamentally different
assumption is made that it is possible to speed up a node by allocating multiple processors
to it, and that a function is known for each node, either through analysis or (more likely)
through experimentation, that maps the number of available processors for the node to
execution time for the node. In most cases, it is expected that assigning more processors
to a node will generally decrease the node execution time, although it is possible that
assigning more processors may actually increase exccution time. A further assumption is
that the input data flow graphs do not have initial tokens or recurrence loops.

The purpose of [7] is to set up and solve the mathematically well-defined response
time optimization problem. Given the above assumptions. the problem is as follows.
Given an upper bound on the total number of processors that may be used, and an upper
allowable bound on the resulting TBO, choose an allocation of processors to nodes of the
data flow graph such that the execution time (i.e. TBIO) of the graph is minimized.

[7] also defines an analogous throughput optimization problem. Again given an
upper bound on the total number of processors available, and an upper bound on TBIO,
the problem is to find an allocation of processors to nodes such that TBO is minimized.

Note the similarity of the above two problems to the TBO versus TBIO tradeoff in
ATAMM operating points, but also note that in this case, unlike in ATAMM, the choice
of "operating point" is a matter of how many processors are assigned to each node.

For highly-specific, precisely-stated mathematical optimization problems such as
those in [7], it is dangerous to make comparisons with other problems since often a
seemingly minor difference in problem statement or the assumptions can lead to quite a
different problem. Nonetheless an attempt will be made to relate the throughput
optimization problem to the ATAMM model. 1n the ATAMM model there is no way to
speedup the execution time (TBIO) of a task by using additional processors, so it is very
difficult to relate the response time problem to ATAMM. However, for the types of data
flow graphs considered in [7], namely trees and scries-parallel graphs, it is always possible
(because these graphs have no loops) to increase throughput by allowing for additional
multiple node instantiations. So, given the appropriate type of data flow graphs, it is
possible to use the throughput optimization algorithm of [7] to compute the number of
processors to assign to each node, i.c. the number of multiple instantiations allowed for
each node. Before the algorithm can be used, it is necessary to determine the processor
count to execution time mapping, but in the ATAMM model this function is always linear:

Node execution time
Number of instantiations

Effective execution time =
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3 A w =

This "execution time" is nor TBI1O. Instead, it is necessary to view n consecutive
iterations of a node as a single "task”, where n = Number of instantiations.

While a mapping between the problem domains of ATAMM and [7] can be made
as above, it is of little practical value since the dynamic programming algorithm in [7] is
designed to handle arbitrary processor to execution time functions, and so is an overkill in
terms of both conceptual and time complexity for the special case of a linear execution
time function as results from ATAMM throughput speedup by multiple instantiation.

5. Conclusion

The primary objective of [2] is to show that for any DFG it is possible to find a
rate-optimal schedule that is fully-static with respect to the unfolded graph and cyclo-
static with period J-TBO,, ,, with respect to the original graph. Because it may be
necessary to unfold a DFG an exponential number of times, the cyclo-static period may be
quite large.

Algorithm 7.1 of [2], which runs in exponential time, constitutes the proof that a
schedule with the desired properties can be found. As a side effect of this algorithm, an
upper bound on the number of processors required to execute the schedule is found.

It (and only if) the number of processors used is not an issue, the determination of
a rate-optimal schedule is trivial. For each node A, simply assign P, = [T(AYT BOALB-I
processors to A and allow P, concurrent instantiations of A. With such an assignment, the
graph will never enter a resource-limited mode, and will execute at TBO = TBO,,, [1].
Furthermore the schedule will be optimally-static since a node is never executed on a
processor not originally assigned to it, and no more processors are assigned to a node than
are required by that node.

The difficult aspect of the problem is attempting to minimize the number of
processors required for a optimally-static rate-optimal schedule. A nearly identical
problem is discussed in [5], the difference being that multiple instantiations are not
allowed since [5] uses the strict definition of fully-static; the problem is found to be NP-
complete as expected. As is done in [S], it is wise to directly attack, either through
heuristics or exhaustive search, the problem of optimizing the number of processors
required to achieve desired exccution properties, such as a rate-optimal TBO and
optimally-static processor assignment.
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6. Future Work |

The following is a summary of recommendations for possible future work for the
ATAMM project, some of which have already been mentioned in various places in this
document.

6.1. Theoretical Work

o  Formally prove that a graph executing under ATAMM rules will eventually reach
steady-state.

e  Formally prove an upper bound on the number of transients that occur from the time
when a graph begins execution until steady-state is reached. (this is a stronger
version of the previous item.)

« Since required memory space appears to be a major advantage of ATAMM vis a vis

optimum unfolding, additional analysis, both theoretical and empirical examples, could
be used to prove this point. -

6.2. Implementation Work
» Devclop an optional additional node-binding step in the design procedure for achieving
fully-static (or cyclo-static if that is all that is desired) operation, as discussed in

Section 4.1,

» [Evaluate the node to processor assignment strategy by simulation.
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